

Unravelling the systematics in ion beam sputter deposition of SiO₂

M. Mateev, T. Lautenschläger, D. Spemann, C. Bundesmann

Introduction

Outline

Motivation

Setup and growth parameters

- Characterization techniques
- Experimental results
- Summary and outlook

XXIV. Erfahrungsaustausch "Oberflächentechnologien mit Plasma- und Ionenstrahlprozessen", Mühlleithen, 07.-09.03.2017

2

Motivation

C. Bundesmann et al., Thin Solid Films 516 (2008) 8604.

Motivation

Ion beam and geometrical parameters

Energy and angular distribution of sputtered and scattered particles

Extend systematic investigations to SiO₂

SiO₂ has many applications: multilayer coatings, semiconductor devices, ...

Similarities and differences to ion beam sputter deposition of TiO₂ (Ag, Ge)

AgR. Feder et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 316 (2013) 198.AgR. Feder et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 317A (2013) 137.C. Bundesmann et al., Thin Solid Films 551 (2014) 46.C. Bundesmann et al., Contrib. Plasma Phys. 55 (2015) 737.R. Feder et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 334 (2014) 88.C. Bundesmann et al., Thin Solid Films 589 (2015) 487.T. Lautenschläger et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 385 (2016) 30.C. Bundesmann et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 395 (2017) 17.C. Bundesmann et al., Appl. Surf. Sci., in press.

Setup and growth parameters

IØM

Introduction

6

Characterization techniques

Done

- ... Film thickness, growth rate optical properties
- ... Composition
- ... Surface roughness

- ... Crystallinity
- ... Mass density

Film thickness (SE)

between 40° and 60°

Growth rate (SE)

Ion incidence angle varied

Ion energy varied

40

40

50 β [°]

60

70

80

90

50 β [°]

60

70

80

90

Increases with

 increasing ion energy
 or ion incidence angle,
 higher for sputtering
 with Xe than for
 sputtering with Ar
 (Total sputter yield)

 Over-cosine angular distribution, tilted in forward direction (anisotropy effects)

XXIV. Erfahrungsaustausch "Oberflächentechnologien mit Plasma- und Ionenstrahlprozessen", Mühlleithen, 07.-09.03.2017

9

IØN

XXIV. Erfahrungsaustausch "Oberflächentechnologien mit Plasma- und Ionenstrahlprozessen", Mühlleithen, 07.-09.03.2017

IŐM

Composition (RBS)

F Higher amount of inert gas particles in TiO_2 films than in SiO_2 films, especially for Ar

C. Bundesmann, et al., Appl. Surf. Sci., in presss, DOI: 10.1016/j.apsusc.2016.08.056.

Composition (RBS)

 \checkmark Higher amount of inert gas particles in TiO₂ films than in SiO₂ films, especially for Ar

Possible reasons: - different mass ratio of interacting particles

- binary Rutherford scattering becomes less important

C. Bundesmann, et al., Appl. Surf. Sci., in presss, DOI: 10.1016/j.apsusc.2016.08.056.

Optical properties (SE)

Ion incidence angle varied

Emission angle varied

XXIV. Erfahrungsaustausch "Oberflächentechnologien mit Plasma- und Ionenstrahlprozessen", Mühlleithen, 07.-09.03.2017

1800

14

Optical properties (SE)

Optical properties (SE)

XXIV. Erfahrungsaustausch "Oberflächentechnologien mit Plasma- und Ionenstrahlprozessen", Mühlleithen, 07.-09.03.2017

160

Summary and outlook

- Film properties of SiO₂ depend systematically on process parameters: surface roughness, composition, optical properties
- Mainly influenced by scattering geometry; impact of ion energy and ion species is rather small
- Results show similar systematics as TiO₂ films, but variations are much smaller
- Differences may be caused by lower mass density variations of SiO₂

- Further film properties (XRR, XRD, ...) \rightarrow mass density, structure
- Properties of secondary particles (ESMS)
- Applications: e.g. amorphous $Ti_xSi_{1-x}O_2$ films for waveguide or photonic devices

17

Acknowledgments

- Prof. Dr. Dr. h.c. B. Rauschenbach
- A. Finzel, F. Frost, J.W. Gerlach, F. Scholze, R. Woyciechowski (all IOM)
- IOM workshop

Financial support:
 DFG (project BU2625/1-2)

Deutsche Forschungsgemeinschaft

Thank you for your attention!

IØM